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Abskaet. We study the Ambegaokar-Halperin solution of the Smoluchowski equation for 
arbitrary smooth periodic potentials. Taking into account an analogy between this problem 
and phase transition phenomena pointed out by Bishop and Trullinger for the harmonic 
potential. we obtain asymptotic formulae for the mean drift velocity of a particle and find 
the values of the ‘critical exponents’, which determine the velocity of a particle. We show 
that the values of the critical exponents do not depend on potential parameters and they 
are determined exclusively by analytical properties of the potential. We consider a concrete 
example of a non-analytical potential leading to other values of the critical exponents. 

1. lntroduetion 

The ideas of synergetics-the science studying the dynamics of systems far from 
equilibrium states-now penetrate into such different fields of science as, for example, 
instabilities in solids and fluids, chemical reactions, neuron networks [I]. One of 
the branches of synergetics is studying the dynamics of systems under the influence 
of stochastic fields. To describe this dynamics in some cases one uses a stationary 
Smoluchowski equation, which has been applied to an analysis of such phenomena 
as superionic conductivity, the behaviour of the mean thermal-noise voltage in the 
Josephson junction, thermally assisted vortex diffusion in superconductors, among 
others [2]. 

In all these phenomena there appears a qualitatively new behaviour of systems under 
the influence of noise as compared to the ideal situation of its absence: namely, the 
threshold response of a system to applied external forces. Here the noise plays a double 
role: as a destabilizing and exciting factor for low-energetic states of a system and as 
a natural limiting factor of the responses of a system to an applied field. An interesting 
analogy between the unstable behaviour of a nonlinear dissipative system and the 
thermodynamic phase transition was found in [3]. In the paper of Bishop and Trullinger 
[4] (BT), it was first noted that the dependence of the mean drift velocity of a particle, 
moving in a periodic harmonic potential, on temperature r a n d  on an external field F 
is analogous to the dependence of the order parameter on an external field and on 
temperature for a classical mean-field phase transition. 
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Let us recall that the order parameter q in the vicinity of the critical point (T= T.) 
may be presented in the usual form 

T< T, ‘-{a“ T > T ,  h = O  

The values of the critical exponents in the context of a classical mean-field phase 
transition theory are p= 1/2 and 6=3.  Here, r = T c - T  (T,  is the phase transition 
temperature, h the external field). 

More exactly, BT showed that the velocity of a particle v/F plays the role of an 
order parameter, 1 / F  plays the role of temperature, temperature T serves as an external 
field h, and a ‘phase transition’ takes place at the point where F=dU(x)/d.u and 
d2U(x)/d2 = 0. 

It is interesting for us to describe the above-mentioned systems in the more general 
situation of an arbitrary periodic field in order to understand how far this analogy may 
be extended and also to show which potential parameters can be extracted from the 
experiment. 

In our paper it is shown that the indicated analogy may be traced a little further; 
namely, it turns out that the mean particle velocity displays a universal behaviour, 
which, in the general case, is not associated with concrete characteristics of the potential. 
The only important fact is the analytical properties of the potential in the vicinity of 
the inflection point of the potential U(x) .  This assertion is based on two simple physical 
ideas. First, since for continuous phase transitions the critical exponents are independent 
of the short-range interactions of particles in the system, but are determined by such 
factors as the interaction symmetry, dimensionality of space and the order parameter. 
the ‘critical exponents’ (which determine the velocity of a Brownian particle) should 
not depend on the form of the potential relief of a moving particle. The second, more 
concrete idea is based on the assertion that at the ‘critical point’, i.e. in the case when 
the external force F is equal to the maximal value of dU/ds, and temperature T i s  
small in comparison with the characteristic value of the potential Uo, a ‘narrow region’ 
of the moving particle is in the vicinity of a point determined as a solution of the 
equations dU/dx=F, d2U/d$=0. The main contribution to the mean drift velocity 
must be determined by this vicinity. But all functions of a ‘general case’ in the vicinity 
of this point xo have the same behaviour V(x)-Fx.u--U,+ Ur(x-xO)’/G and, hence, 
they should give the velocity, depending on U ;  only (see (20), (23) and (24) below). 

The outline of the paper is as follows. In section 2 we cite the general solution of 
the Smoluchowski equation, in section 3 the function V ( x ,  x‘) inherent in the general 
solution is analysed, in section 4 we calculate the drift velocity. In section 5 we discuss 
the obtained results. Finally, some concluding remarks are given in section 6. 

2. The Smoluchowski equation and its solution 

The diffusion Smoluchowski equation 
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describes the viscous motion of the particle if one neglects the particle inertia. We 
introduce 

U ( x )  = U(X)  - Fx U ( x + d ) =  U ( x )  (3) 
where U , ( x )  is the total potential, U ( x )  is periodic in the potential x with period d, F 
is a driving force and k is a damping constant. 

In the stationary case which will be considered below, the Smoluchowski equation 
for the density distribution function a(x, t )  is reduced to the time-independent equation 

dU, d a  
dx dx 

U-+ T -= - kl*' 

where w is an integration constant. 
Using the property of the function f(x)=exp(-pU,(x)), 

(4) 

(5 )  

the solution of (4), satisfying the periodic boundary condition o ( x + d ) =  ~ ( x ) ,  can be 
presented in the form (see [5,6]) 

where now (as distinct from ( I ) )  p = 1/T. Using (4) and the microscopic analogue of 
the Smoluchowski equation-the Langeven equation 

d U, k i =  - -+L( t )  
dx (7) 

where L(t )  represents the thermally fluctuating Langeven force with zero mean value, 
we obtain the expression for the mean drift velocity 

( i ) = d w .  (8) 
The normalization condition for density distribution function u(x, t ) ,  

(9) 
normalized so that u+F at p-0 (see (7) and the definition of Q (10)). In (9) we 
introduced 

Jto(x) dx= 1, applied to (6), allows us to find w,  and the scaled velocity v 

U =  k ( i )  = d [ I -exp(-pFd)]/PQ 

(10) 

(1  1) 

@ = & Iod dx' e-p v ( X .  A') 

V ( X ,  I) = U(x) - O(x+ x') + Fx' 

where a is an arbitrary parameter, chosen for the reason of convenience of integration. 

3. Analysis of V ( x ,  x') 

In order to find the drift particle velocity it is necessary to calculate the function Q in 
(IO). This function has been found by BT for U ( x )  = -cos(x). It was shown that v can 
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be expressed by means of a modified Bessel function of imaginary order. In this way, 
asymptotic expressions for U at different relations between the parameters T, F and 
U;, were found. We shall analyse (10) for the arbitrary potential U ( x ) ,  and particular 
attention will be paid to the viciaityof the phase transition point T=O, F= U;. Evalua- 
tion of the integral (IO) may be performed using the Laplace method applied to a two- 
dimensional region on the plane (x, x‘). For this it is necessary to analyse the function 
V(x, x’) and to find the point of its minimum. Silvestr’s theorem-the condition of the 
minimum of the function V ( x ,  *‘)-states that 

0 V Usarenko et a1 

v:=o v:. = 0 V L > O  v:.rv:, - (v:+ 0. (12) 

U ‘ ( x ) = F  U ’ ( x + x ‘ ) = F  U”(.X)>O U”(x + x‘) <o. (13) 

Using (1  1) we can reduce these expressions to 

For simplicity we assume U ( x )  to be a monotonically increasing function of n at 
xlm<x<xzm, where xlm is the position of the minimum value of O ( x )  and x2,,, corre- 
sponds to the maximum value of U ( x ) ,  In addition, without loss of generality, but for 
the sake of convenience of calculation, let us choose the origin of the coordinates so 
that at x=O the following relations hold: 

(14) 

With such assumptions the inequality U:= d’U,’d~~,,~<0 is automatically fulfilled, 
which will be important later. 

Let xI and x2 denote the solutions of the equation U ’ ( x )  = F, for F <  U ; .  Thereafter, 
the solutions of (13) are x=xl<0,x‘=x2-xI,n2>0 (see figure 1). The explicit form 
of these solutions may be found in the limiting cases: at F<< U ;  we have 

U ;  = d2 U/dx:x=o = 0 U;= dU/du, =o > 0. 

(15) 
F 

x2 = Xzm - F 
XI =XIm+ - 

U”(X,mj I U”(x2m)l 
and at (Ub- F)<<Ut,,  F< U ;  we get 

x1.2= *[[2(U;-F)/lU:1]”2. (16) 
The quadratic minimum of the function V(x, x’) determined by (13) exists under 

the condition F <  U;. With the increase of F from zero to Ub it is displaced as indicated 

T 
U’= F 

\ c 
X 

Figure 1. xt and JZ are solutions of thc equation U‘(x )=  F. 
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Figure 2. Position of the minimum of the function V ( x ,  I') = U ( x )  - U(r t .XI) t F.?. Point 
A indicates the 'initial' position at F=O. With increasing Ftheminimum point is displaced 
to position 0, where F= U;. 

in figure 2 from the point A=(x,x')=(xl,,x~,-x~,) to the point (x,x')=(O,O). In 
the limit F-r U6 the quadratic minimum disappears and when F= U;  the expansion of 
V(x, x') near the point (0,O) begins with the term of third order. It is also useful to 
note also the relation V(x, 0) =O. For F> U:, at the point (x, x') = (0,O) the derivative 
dV(x, x')/dx' has a minimum value, and this point plays an important role in the 
integral (lo). 

4. Calculation of the drift velocity in the vicinity of the phase transition point 

For /3Uo>> I and F < U ;  i t  is possible to use the Laplace method of calculation of (IO).  
It is convenient to choose the parameter a in (IO) so that the boundaries of integration 
do not pass through the minimum and its vicinity. Expanding V(x, x') in the vicinity of 
(x, x') = (xI , x2-xI) with an accuracy of 6 9  and integrating, we obtain from (9)-( 1 1 )  

This result is valid if the minimum of the function V(x, x') with its vicinity D, 
giving the main contribution to the integral (IO), does not pass near the boundary of 
integration, or, in other words, the width D of the distribution function o(x) (see ( 6 ) )  
is less than d and x2 - X I  : 

D-I/(pU")'12<< Min(d, xz-xl). (18) 

At F g  U6 we havex, -x2-d, and from (18) weget @Uo>> 1. Ifthedifference between 
Fand Ubissmall, i.e. for(UQ-F)<cUb,F<Ub, thenusing(16), weobtain from(18) 
pUo>>l and 1p1 >>I, where 

(19) = (F-  U;)  (spZ/l u0"1)1/3. 
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For such values of parameters (U;-  FK U ; ,  F <  Uh and 1p[>> I ) ,  the expression for 
the drift velocity (17) may be simplified with the help of (16), and we get 

For F- U6 and 1p1c 1 the position of the minimum is (x, x') = (O,O), and this point 
gives the main contribution to the integral (IO).  The coefficients of linear terms in the 
expansion of V(x, x') near (x, x') = (0, 0), under the condition 1p1 <c 1, become small, 
quadratic terms disappear and the contribution to the integral is determined by cubic 
terms. Expanding V(x, x') in its vicinity with an accuracy of x3 and introducing the 
new variables 

we have after integration of ( IO)  

For the mean velocity of motion we then get 

Finally, at F> Ub and p >>I, as before, the point (x, x') = (0,O) gives the main 
contribution to the integral [IO), because, for all x, V ( x , O ) = O ,  and the derivative 
dV(x, x')/dx'lymo has the minimum value at x=O. Using (22) and taking into account 
$<<'U, we obtain 

5. Discussion 

We should note first of all that ( Z O ) ,  (21) and (24) determine completely the dynamics 
of a particle in the vicinity of the critical point. To establish the analogy between the 
obtained expressions and continuous phase transitions, the following correspondence 
of values will be discussed (see ( I ) ) :  

Phase transition tl T h T. 
Brownian particle u/F 1 l F  T I / U;. 

For T> T, and h - 0  an order parameter vanishes: this corresponds to the velocity 
vanishing in (17) and (20) at T-0. For T< T,, the power law behaviour of the order 
parameter r p  at small h corresponds to U-- in (24) at p >>I. Finally from (23) 
one gets U- which is equivalent to the second equality of ( I ) .  By analogy we can 
establish a correspondence between other critical exponents. We do not discuss this 
problem here since the expressions for other critical exponents coincide completely with 
those of BT. This coincidence stems from the fact that the results of BT are a particular 
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case of our results, at least in the vicinity of the critical point. To see this, it is sufficient 
to substitute U;= I ,  U:= - 1, F = x ,  B =  y/2,d=2a in (20). (23) and (241, where the 
values on the right-hand sides are referred to the notation of ET, and the values of 
d"U/dx" are taken at the inflection point for the potential used by ET, U ( x ) =  -cos x. 
However, note that the results of BT have a wider range of applicability. This is con- 
nected with the fact that in the paper by BT the concrete harmonic potential was used, 
and the highly developed technique of calculations using Bessel functions allows one to 
obtain approximate results without the need of such strong inequalities as. for example, 
(U;-F)<<Uclb. Notice also that far from the critical point the velocity is necessarily 
expressed via the global characteristics of the potential. This naturally diminishes the 
value of information contained in the formulae, if we deal with the question of recon- 
struction of potential parameters from experimental data using the above-obtained 
formulae. 

The obtained results can be easily generalized for potentials having a few inflection 
points on the period. It is clear that in this case there is a 'bottle neck' for a moving 
particle at the point where the first derivative U ( x ) / b r  is maximal. In this situation it 
is not difficult to understand that in all the above-mentioned formulae the values of 
U; and U t  must be calculated only at the indicated point. 

We assumed in our reasoning that the potential U ( x )  in the vicinity of the inflection 
point is a smooth function and at this point U"'#O. To emphasize the role of the 
analytical properties of U ( x )  we consider below the non-analytic piece-by-piece linear 
potential 

2Uox/d 0 < x <d/2 
u(d={2U~(l-x/d) d/2 <x < d  

and U ( x )  repeats itself periodically at x < O  and x>d. Simple but sufficiently cumber- 
some manipulations with (9) and (10) give us the following result: 

where $= Fd/4T, U= U0/2T. In order to compare this result with (23), we consider 
(26) in the limit F-Ub=2Uo/d and TdO. For the mean velocity owe get from (26) 
u=8T/d. This is evidently different from the result obtained earlier (see (23)). The 
difference may be understood easily if we take into account that the main contribution 
to Q is determined by the region whose dimension 6x depends on the character of the 
potential. For the analytical potential 6x- (see (22)) each integration with respect 
to variables x and x' gives T'". As a result, for the 'cubic minimum' we have (23), 
where Q- TZl3 and o-TtP. A 'bottle neck' for the potential (25) does not depend on 
T, 6x = d/2, and we get 41 - To and U- T. 

To obtain further insight into the problem, we want to point out another way of 
calculating (26) at the critical point. Figure 3 shows the function V ( x , x ' )  for the 
potential (25) in the case F= Ub=2Uo/d (cf. figure 4). We can see that in the limit 
D+oo the function 0, is equal to d2/8 (see (10) and figure 3). From (9), in the same 
limit D-co we get v=d/D@, and finally we have the above-mentioned result o=8T/d. 

To explain in more detail the connection of the two results (23) and (26), by means 
of the limiting procedure we shall study qualitatively another potential which gives such 
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Fiyre 3. The function V ( x ,  x’) for the piece-by-piece linear potential (25) for the case 
F = U & = Z U O / ~ .  

Figwe 4. General view oi the function V(x, a‘) for the smooth potential U ( x )  in the vicinity 
of the point (0.0) for the case F= U;. 

a possibility. We consider the potential U ( x )  defined in the following way: 

U ( x ) =  Uosin[n(Ixl -d/4)/L] 1x1 <d/2 (27) 
which repeats itself periodically for 1x1 > d/2. For L = d / 2  it gives the analytical potential 
U ( x )  = - U. cos(2nx/d). In the limit L-+ CO it coincides with the non-analytic potential 
(25), i.e. it gives the possibility of studying the limiting transition from !he result (23) 
to the case of !he non-analytical potential (25) when L-CO. For the potential (27) we 
have U:- U0/L3,  Sx-(l/Uf/3)”’ and from Sxccdwe get the condition of applicabil- 
ity of (23), namely Lc<d(PUO)”’.  With increasing L the region on the plane (x,x’) 
making the essential contribution to the integral (IO) grows. The cubic maximum in 
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the vicinity (0,O) (see figure 4) is transformed into a plane three-angular region of 
figure 3. In the case of the strong inequality L>>d(pUo)”3, when the third derivative 
U: becomes abnormally small we come to the potential (25) and lo the result U- 7: 
However, it is very difficult to calculate @ in the intermediate case L-d(PUo)”3.  

6. Conclusion 

In this paper the movement of a Brownian particle in the arbitrary periodic potential 
under the influence of a constant external force is considered. It is shown that the 
character of the movement of the particle in the vicinity of the critical point does not 
depend on the form of the potential, but it is determined by its analytical properties in 
the vicinity of the potential inflection point. Thus, an analogy between Brownian motion 
and continuous phase transitions takes place not only for the harmonic potential. 
Undoubtedly, such an analogy might be more interesting with the fluctuation phase 
transition theory. We hope it may be realized in the framework of more complicated 
models; for example, in the nonlinear sine-Gordon chain consideyed in 171. Despite 
many theoretical works in this direction [S-141 (see also [15] and the numerous refer- 
ences therein), the behaviour of the sine-Gordon chain in the vicinity of the critical 
point still remains unexplored. We intend to present the results of studying these systems 
in future publications. 
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